An Improved Method of Model-Free Adaptive Predictive Control: A Case of pH Neutralization in WWTP

Author:

Li Jufeng1,Tang Zhihe1,Luan Hui1,Liu Zhongyao2,Xu Baochang2,Wang Zhongjun2,He Wei1

Affiliation:

1. HSE Testing Center, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China

2. College of Information Science and Engineering, China University of Petroleum, Beijing 102249, China

Abstract

pH neutralization reaction process plays a crucial role in Waste Water Treatment Process (WWTP). Traditional PID Proportion Integral Differential, (or even advanced PID control) algorithms have poor performance on WWTP due to the strong non-linearity, large time lag, and large inertia characteristics of pH neutralization. Therefore, finding a superior control method to maintain the pH value of wastewater within the normal range will greatly help to improve the efficiency and effectiveness of wastewater treatment. The chemical reaction mechanism of pH neutralization reaction process is first analyzed, and a mechanistic model of pH neutralization reaction process is developed based on the reaction of ions during acid-alkali neutralization and the electric balance equation. Then, combining the characteristics of generalized predictive control and Model-Free Adaptive Control (MFAC), a Model-Free Adaptive Predictive Control (MFAPC) method based on compact format dynamic linearization is introduced. An Improved Model Free Adaptive PI Predictive Control algorithm (IMFAPC) with proportional (P) and integral (I) algorithms is proposed to further improve the control performance. IMFAPC is proposed on the basis of MFAPC, combining the advantages of generalized predictive control, introducing a PI module consisting of error and error sum, and predicting the PI module, making it possible to produce more accurate constraints on the control inputs, avoiding increasing errors, and improving the control effect of delayed systems at the same time. pH neutralization process simulation experimental results show that compared with the ordinary Model-Free Adaptive Control (MFAC) and MFAPC, the IMFAPC control algorithms has the best performance in terms of accuracy, overshoot, and the robustness.

Funder

Research on Intelligent Management and Control Technology for Typical Refinery and Chemical Wastewater Treatment Plants Grant

Research and development of data transmission equipment for automatic pollution source monitoring system

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3