Fabrication of Strong Self-Reinforced Polyethylene Terephthalate Composites through the In Situ Nanofibrillation Technology

Author:

Kim Eric S.1,Lee Patrick C.1ORCID

Affiliation:

1. Multifunctional Composites Manufacturing Laboratory (MCML), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

Abstract

Fabrication of self-reinforced polyethylene terephthalate (PET) has been achieved through the in situ generation of PET fibrils via a spun bond process. The reinforcement fibrils created from the PET with higher Tm are made from a unique in situ processing method. As a result, the fibrils are well dispersed and distributed in the lower Tm PET matrix. The high degree of molecular similarity affords perfect interfaces between the matrix and dispersed phase, leading to excellent stress transfer from the matrix to the dispersed fibrils. While the extremely large interfaces from the nanofibrillation process can maximize the advantage of the excellent molecular similarity of the self-reinforced polymeric composites, few studies have been conducted to research nanofibrillar self-reinforced polymeric composite systems. Hence, as a proof of concept, this work provides new insight into an approach for developing a self-reinforced polymeric system with a nanofibrillation process. This process increases the tensile strength of PET composites by up to 15% compared to composites made by a simple blending process and 47% higher than neat PET. Furthermore, extensional viscosity measurements show a strain-hardening behavior in the fibrillated PET composites not observed in the neat PET and showed minimal behavior in un-fibrillated PET composites. The foam process results reveal that the presence of PET fibrils in PET improves the expansion ratio as well as the cell density of the PET composites. Specifically, compared to the PET composite foams without the fibrillation process, fibrillated PET composite foams showed up to 3.7 times higher expansion ratios and one to two orders of magnitude higher cell densities. In thermal conductivity measurements, fibrillated PET composite foams achieved thermal conductivity of as low as 0.032 W/mK.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3