A Multilevel Multiresolution Machine Learning Classification Approach: A Generalization Test on Chinese Heritage Architecture

Author:

Zhang Kai,Teruggi SimoneORCID,Ding Yao,Fassi FrancescoORCID

Abstract

In recent years, the investigation and 3D documentation of architectural heritage has made an efficient digitalization process possible and allowed for artificial intelligence post-processing on point clouds. This article investigates the multilevel multiresolution methodology using machine learning classification algorithms on three point-cloud projects in China: Nanchan Ssu, Fokuang Ssu, and Kaiyuan Ssu. The performances obtained by extending the prediction to datasets other than those used to train the machine learning algorithm are compared against those obtained with a standard approach. Furthermore, the classification results obtained with an MLMR approach are compared against a standard single-pass classification. This work proves the reliability of the MLMR classification of heritage point clouds and its good generalizability across scenarios with similar geometrical characteristics. The pros and cons of the different approaches are highlighted.

Funder

China Scholarships Council

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Archeology,Conservation

Reference40 articles.

1. López, F.J., Lerones, P.M., Llamas, J., Gómez-García-Bermejo, J., and Zalama, E. (2018). A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact., 2.

2. 3d Surveying, Semantic Enrichment and Virtual Access of Large Cultural Heritage;Teruggi;Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 1–4 November 2021,2021

3. Teruggi, S., and Fassi, F. (2021). Proceedings of the Pattern Recognition, ICPR International Workshops and Challenges, Virtual Event, 10–15 January 2021, Springer.

4. Teruggi, S., and Fassi, F. (2021). Proceedings of the Joint International Event 9th ARQUEOLÓGICA 2.0 & 3rd GEORES, Valencia, Spain, 26–28 April 2021, Universitat Politècnica de València.

5. Krizhevsky, A., Sutskever, I., and Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FROM 3D SURVEYING DATA TO BIM TO BEM: THE INCUBE DATASET;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-10-19

2. A SEMI-AUTOMATED APPROACH TO MODEL ARCHITECTURAL ELEMENTS IN SCAN-TO-BIM PROCESSES;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3