Affiliation:
1. US National Park Service, Southern Arizona Office, Phoenix, AZ 85712, USA
2. US Department of Agriculture, Agricultural Research Service, Southwest Watershed Research Center, Tucson, AZ 85719, USA
Abstract
Adobe has been used globally for millennia. In the US Southwest, cultural heritage sites made of adobe materials have lasted hundreds of years in an arid/semi-arid environment. A common prediction across multiple climate change models, however, is that rainfall intensity will increase in the US Southwest. This increased erosivity threatens the long-term protection and preservation of these sites, and thus resource managers are faced with selecting effective conservation practices. For this reason, modeling tools are needed to predict climate change impacts and plan for adaptation strategies. Many existing strategies, including patching damaged areas, building protective caps and shelter coating walls are already commonly utilized. In this study, we modeled adobe block construction, subjected extant walls to a local 100-year return interval rainfall intensity, and tested earthen-coat-based strategies to minimize the deterioration of earthen fabric. Findings from the resultant linear models indicate that the patching of earthen architecture alone will not prevent substantial damage, while un-amended encapsulation coats and caps provide similar, and significantly greater protection than patching. The use of this model will enable local heritage resource managers to better target preservation methods for a return on investment of the material and labor costs, resulting in better preservation overall and the retention of culturally valuable resources.
Subject
Materials Science (miscellaneous),Archeology,Conservation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献