Deep Learning Enhanced Multisensor Data Fusion for Building Assessment Using Multispectral Voxels and Self-Organizing Maps

Author:

Raimundo Javier1ORCID,Medina Serafin Lopez-Cuervo1ORCID,Mata Julian Aguirre de1ORCID,Herrero-Tejedor Tomás Ramón2ORCID,Priego-de-los-Santos Enrique3ORCID

Affiliation:

1. Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, Campus Sur, A-3, Km 7, 28031 Madrid, Spain

2. Departamento de Ingeniería Agroforestal, Universidad Politécnica de Madrid, Campus Ciudad Universitaria, Av. Puerta de Hierro, nº 2–4, 28040 Madrid, Spain

3. Department of Cartographic Engineering, Geodesy and Photogrammetry, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain

Abstract

Efforts in the domain of building studies involve the use of a diverse array of geomatic sensors, some providing invaluable information in the form of three-dimensional point clouds and associated registered properties. However, managing the vast amounts of data generated by these sensors presents significant challenges. To ensure the effective use of multisensor data in the context of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a novel approach to multisensor data fusion using multispectral voxels, which enable the application of deep learning algorithms as the self-organizing maps to identify and exploit the relationships between the different sensor data. Our results indicate that this approach provides a comprehensive view of the building structure and its potential pathologies, and holds great promise for revolutionizing the study of historical buildings and their potential applications in the field of cultural heritage preservation.

Funder

Fundación Premio Arce

Publisher

MDPI AG

Reference69 articles.

1. Del Pozo Aguilera, S. (2016). Multispectral Imaging for the Analysis of Materials and Pathologies in Civil Engineering, Constructions and Natural Spaces. [Ph.D. Thesis, Universidad de Salamanca].

2. Combining Geometrical and Radiometrical Features in the Evaluation of Rock Art Paintings;Digit. Appl. Archaeol. Cult. Herit.,2017

3. Damage Detection on Historical Buildings Using Unsupervised Classification Techniques;Crespo;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch.,2010

4. Non-Destructive Techniques as a Tool for the Protection of Built Cultural Heritage;Moropoulou;Constr. Build. Mater.,2013

5. Three-Dimensional Virtual Models for Better Comprehension of Architectural Heritage Construction Techniques and Its Maintenance over Time;Oreni;Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3