On the Thermal Resilience of Venetian Open Spaces

Author:

Gherri Barbara,Maiullari Daniela,Finizza Chiara,Maretto MarcoORCID,Naboni Emanuele

Abstract

Venice is known for its urban heritage fragility. The city is experiencing an increase in yearly average temperatures affecting outdoor–indoor comfort and average energy expenditure. Owing to existing literature demonstrating how local microclimate depends on urban density, form, and materials, this investigation studies the influence of the changing local climate on Venetian vernacular open spaces, known as Campi. Based on the comparison of contemporary weather and the Intergovernmental Panel on Climate Change’s (IPCC) future predictions for the 2050 scenario, this investigation highlights how Campi’s open spaces and the surrounding buildings, canals, and green public areas contribute to building climate resilience. By employing advanced modelling, the study analyses microclimate and outdoor comfort with respect to users’ perception of Physiological Equivalent Temperature (PET). The ENVI-met tool is used to simulate the thermal behaviour of two representative Campi: SS. Giovanni e Paolo and S. Polo. Despite significant temperature growths, Venetian urban fabric characteristics seem to play a crucial role in strengthening the climate resilience of open spaces, thus preserving outdoor comfort quality in a warmer future. The analysis shows how the historical matrix of open spaces and buildings cooperate. Thus, this study offers a contribution to how built heritage should be considered in light of climate change.

Publisher

MDPI AG

Subject

General Mathematics

Reference54 articles.

1. IPCC 2013 Climate Change: The Physical Science Basis,2013

2. Europe is Getting Warmer, and It’s Not Looking Like it’s Going to Cool Down Anytime Soonhttps://www.europeandatajournalism.eu/eng/News/Data-news/Europe-is-getting-warmer-and-it-s-not-looking-like-it-s-going-to-cool-down-anytime-soon

3. Heat stress risk and resilience in the urban environment

4. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change

5. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3