Synthetic 3D Recording of a Shipwreck Embedded in Seafloor Sediments: Distinguishing Internal Details

Author:

Boldreel Lars O.,Grøn Ole,Cvikel DeborahORCID

Abstract

3D recording of shipwrecks completely buried in seafloor sediments has great potential as an important aspect of maritime archaeological surveys and management. Buried shipwrecks have been recorded directly with seismic 3D Chirp sub-bottom profilers on an experimental basis. This method is, however, expensive, time-consuming and complicated. This article outlines the application of a faster, cheaper, and less complicated method of synthetic 3D recording, which is also less sensitive to weather conditions. It involves the acquisition of a larger number of seismic 2D high-resolution sub-bottom profiles in a dense grid that does not need to be regular. The method is based on the results of survey work conducted in the Akko Harbour area, on the Carmel coast of Israel, which shows that the shape of the hull of a shipwreck can be precisely determined, and that the sedimentary units bounding it can be outlined and interpreted. Based on an interpretation of the shape of the hull, the depth of the structure was measured, and a 3D image of the shipwreck was subsequently generated. Samples of the sub-seafloor were obtained across the area, and the sample located within the area of the mapped shipwreck was found to contain wood fragments and a piece of rope. This article demonstrates that 2D surveying is a viable and cost-effective alternative to 3D surveying that is able to produce good results.

Publisher

MDPI AG

Subject

General Mathematics

Reference29 articles.

1. Mapping the Seabed and Shallow Subsurface with Multi-Frequency Multibeam Echosounders

2. The Archaeology of Europe’s Drowned Landscapes: Introduction and Overview;Bailey,2020

3. Acoustic detection and mapping of submerged Stone Age sites with knapped flint;Grøn,2021

4. 3D documentation of shipwrecks embedded in sea-floor sediments

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3