Performance of a Salt-Accumulating Substitution Lime Render for Salt Laden Historic Masonry Walls

Author:

Fragata AnaORCID,Veiga RosárioORCID,Velosa AnaORCID

Abstract

Salt crystallization is one of the main decay processes in historic masonry mortars, and climate change can worsen the salt weathering effects on those materials as result of, e.g., more often rain falls, more intense solar radiation and sea level rise. In this paper, the effectiveness and durability of a substitution “ventilated render” system (a two-layer render, with base and outer layer and “vertical grooves” in the base layer) on a full-scale salt laden masonry wall to reproduce conditions that may be found in real cases was investigated. The crystallization at the interface between render layers and in vertical grooves and the effect of the porous structure on salt crystallization were thoroughly investigated. It was highlighted the reliability of the results of the salt crystallization testing procedure on a full-scale masonry wall to attest the efficiency and durability of the render system. Finally, it was proven that the ventilated render system with water repellent in the outer layer is durable and efficient enough to be used as a substitution render on salt laden historical masonries, acting as a salt accumulation render where salts preferably crystallize in, delaying the damage on the outer surface without introducing harmful effects in the masonry.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the contribution of tidal floods on damp walls of Venice;International Journal of Disaster Risk Reduction;2024-08

2. Hygric and thermal properties of Slovak building sandstones;Journal of Building Engineering;2023-05

3. Testing for New Requirements for Building Coatings;Advances on Testing and Experimentation in Civil Engineering;2023

4. Resistance of Lime-Natural Pozzolan Mortars in Salt-Laden Environments;International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3