Predicted Dynamic of Biodeterioration in Cultural Heritage Stones Due to Climate Changes in Humid Tropical Regions—A Case Study on the Rhodotorula sp. Yeast

Author:

Sitzia Fabio12,Lisci Carla12ORCID,Pires Vera12ORCID,Dias Luís1,Mirão José1ORCID,Caldeira Ana Teresa1ORCID

Affiliation:

1. HERCULES Laboratory & IN2PAST, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal

2. Geosciences Department, School of Sciences and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal

Abstract

The recent global warming started at the end of the 19th century, causing an increase in the average temperature of Earth and posing environmental, social, economic, and cultural repercussions. Much tangible cultural heritage is composed of natural stones, which decay due to the combination of chemical, physical, and biological factors. Biodeterioration leads to a loss of the performance requirements and socio-economic value of stone building materials. In the future, the dynamics of biodeterioration will hypothetically vary. This study aims to shed light on this variation by comparing biodeterioration under historical climatic conditions (1995–2014) with a future scenario defined by the IPCC SSP5-8.5 for the reference period 2080–2099. The material tested is Pedra de Ançã (PA), a candidate for World Heritage Stone. Climatic chambers were used to simulate the historical and predicted environmental conditions. The scope of this investigation is to understand the growth dynamic of the biodeteriogen Rhodotorula sp. and to study the morphological and aesthetic variations of stone surfaces. Biochemical and micro-topographic analyses highlighted the metabolic activity of the population proliferating under distinct environmental conditions, revealing better adaptability of Rhodotorula sp. and higher biocorrosion in the historical climate status with respect to the future.

Funder

INOVSTONE4.0

European Union

Fundacao para a Ciencia e Tecnologia

European Communion—Portugal

Recursos Humanos Altamente Qualificados (RHAQ), University of Evora

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Archeology,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3