Abstract
Timber is widely used in the construction of buildings on a global scale, but it is sensitive to degradation. Moisture notably poses a risk to timber decay, and this is likely to change significantly during the 21st century if a high emission scenario occurs. Global HadGEM3 model output was used to map projected changes in relative humidity range, seasonality of relative humidity, time of wetness, wind-driven rain, salt transitions and potential for fungal attack (Scheffer Index). In the Congo Basin, Great Plains (USA) and Scandinavia, humidity ranges are likely to increase along with seasonal change. In many parts of the tropics, time of wetness is likely to decrease by the end of the century. Increases in days of wind-driven rain are projected for western Russia, eastern Europe, Alaska, western Canada and Southern Brazil and Paraguay. Drylands have historically had a low salt risk, but this is projected to increase. In the future, a broad extension of fungal risk along the Himalayas and into central China seems likely, driven as much by temperature as rainfall. The picture presented suggests a slightly less humid heritage climate, which will redistribute the risks to heritage. Mapping global pressures of timber decay could help policymakers and practitioners identify geographically disparate regions that face similar pressures.
Subject
Materials Science (miscellaneous),Archeology,Conservation
Reference61 articles.
1. Wood-Water Relations;Skaar,2012
2. A driving rain exposure index for Norway
3. The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies,2010
4. Heritage Climatology;Brimblecombe,2010
5. Policy Relevance of Small Changes in Climate with Large Impacts on Heritage;Brimblecombe,2018
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献