Optimization of Intervention Strategies for Masonry Buildings Based on CLT Components

Author:

Salvalaggio MatteoORCID,Valluzzi Maria RosaORCID

Abstract

Unreinforced masonry has been for centuries one of the most widespread constructive techniques for both massive structures and civil buildings (e.g., palaces, hospitals, houses), for the most still standing nowadays. Their future conservation relies on (i) their protection from main natural threats (e.g., earthquakes) and (ii) updating to current functionality and hygrothermal standards. In the former framework, existing masonry buildings proved to have some intrinsic vulnerabilities, depending on composition (units and binder) and structural typologies. Based on experience gathered from seismic events, various retrofitting techniques have been proposed. In such a context, the use of cross-laminated timber (CLT) components is a very promising solution, in terms of compatibility with built heritage and integration of seismic and hygrothermal performances. This paper aims at improving the knowledge of the structural performances of compound timber–masonry interventions by numerical simulations carried out at (i) pier scale and (ii) building full scale via finite element modeling and nonlinear static analyses (pushover). First, a coupled timber–masonry wall was simulated and underwent sensitivity analyses with the properties of both components varying; then, the optimized solution was applied to a case study to assess the intervention benefits, and the results were also cross-checked with those of more traditional interventions (e.g., grout injections).

Funder

Veneto Region

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Archeology,Conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3