Quantitative Assessment of Impact and Sensitivity of Imaging Spectroscopy for Monitoring of Ageing of Archival Documents

Author:

Padoan RobertoORCID,Klein Marvin E.,Groves Roger M.ORCID,de Bruin Gerrit,Steemers Ted A. G.,Strlič MatijaORCID

Abstract

Ageing of historical documents often results in changes in the optical properties of the constituent materials. Imaging spectroscopy (IS) can be a valuable tool for monitoring of such changes, if the method fulfils two important conditions. Firstly, compared to natural ageing, the accumulated light dose from repeated measurements of the monitored document must not induce any significant degradation. Secondly, the monitoring instrumentation and procedures should be sensitive enough to detect changes in the materials before they become visible. We present experimental methods to evaluate the suitability of IS instrumentation for monitoring purposes. In the first set of experiments, the impact of repeated monitoring measurements was determined using a set of Blue Wool Standard materials. In the second set of experiments, the capability of the instrument to detect spectral changes was tested using ISO standard materials and several documents representative of European archive collections. It is concluded that the tested hyperspectral instrument is suitable for monitoring of the colour change of documents during display. The described experimental approach can be recommended to test the suitability of other imaging spectroscopy instruments for monitoring applications.

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Archeology,Conservation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3