YOLO-GW: Quickly and Accurately Detecting Pedestrians in a Foggy Traffic Environment

Author:

Liu Xinchao1,Lin Yier1

Affiliation:

1. College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China

Abstract

In practice, the object detection algorithm is limited by a complex detection environment, hardware costs, computing power, and chip running memory. The performance of the detector will be greatly reduced during operation. Determining how to realize real-time, fast, and high-precision pedestrian recognition in a foggy traffic environment is a very challenging problem. To solve this problem, the dark channel de-fogging algorithm is added to the basis of the YOLOv7 algorithm, which effectively improves the de-fogging efficiency of the dark channel through the methods of down-sampling and up-sampling. In order to further improve the accuracy of the YOLOv7 object detection algorithm, the ECA module and a detection head are added to the network to improve object classification and regression. Moreover, an 864 × 864 network input size is used for model training to improve the accuracy of the object detection algorithm for pedestrian recognition. Then the combined pruning strategy was used to improve the optimized YOLOv7 detection model, and finally, the optimization algorithm YOLO-GW was obtained. Compared with YOLOv7 object detection, YOLO-GW increased Frames Per Second (FPS) by 63.08%, mean Average Precision (mAP) increased by 9.06%, parameters decreased by 97.66%, and volume decreased by 96.36%. Smaller training parameters and model space make it possible for the YOLO-GW target detection algorithm to be deployed on the chip. Through analysis and comparison of experimental data, it is concluded that YOLO-GW is more suitable for pedestrian detection in a fog environment than YOLOv7.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3