Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere

Author:

Wang Haoyu1,Jiang Yipei1,Park Evan1,Han Xue2ORCID,Zeng Yimin2,Xu Chunbao1ORCID

Affiliation:

1. Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada

2. CanmetMATERIALS, NRCan, Hamilton, ON L8P 0A5, Canada

Abstract

Hydrothermal liquefaction (HTL) is a thermochemical process for production of biocrude oils, commonly from wet biomass under inert atmosphere (N2). Influence of reaction atmosphere on HTL of pinewood sawdust was investigated in this work, at 300 °C for 60 min with the presence of KOH or H2SO4 catalyst under N2, H2, and O2 atmosphere, respectively. Very interestingly, the reaction atmosphere showed significant influence on both products distribution and properties of the biocrude oils. Generally, H2 atmosphere enhanced biomass degradation in the presence of either KOH or H2SO4 catalyst, producing the highest biocrude oil yield, lowest solid residue yield, and the best oil quality in terms of total acid number (TAN), viscosity and average molecular weights (Mn, Mw). Whereas the HTL in O2 atmosphere showed the poorest performance in terms of yields and properties of biocrude oils. The highest quality of biocrude oil was produced using KOH catalyst in H2 atmosphere with the maximum biocrude yield (approx. 34 wt.%) and the highest energy recovery (ER) in biocrude (ER = 73.14%). The measured properties of the oil are as follows: TAN = 40.2 mg KOH/g, viscosity = 51.2 cp, Mn = 470 g/mol, Mw = 767 g/mol. In addition, the biocrude oils produced in H2 atmosphere contain more light oil (naphtha) fraction (23.9 wt.% with KOH and 16.5 wt.% with H2SO4) with lower boiling points, while those generated in O2 atmosphere have more carboxylic acid compounds.

Funder

Canadian NRCan Forest Innovation and OERD Clean Energy

NSERC

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3