Affiliation:
1. Department of Electrical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
2. Siemens Gamesa Renewable Enerji A.Ş, Izmir 35530, Turkey
Abstract
Early detection of cascading failures phenomena is a vital process for the sustainable operation of power systems. Within the scope of this work, a preventive control approach implementing an algorithm for selecting critical contingencies by a dynamic vulnerability analysis and predictive stability evaluation is presented. The analysis was carried out using a decision tree with a multi-parameter knowledge base. After the occurrence of an initial contingency, probable future contingencies are foreseen according to several vulnerability perspectives created by an adaptive vulnerability search module. Then, for cases identified as critical, a secure operational system state is proposed through a vulnerability-based, security-constrained, optimal power flow algorithm. The modular structure of the proposed algorithm enables the evaluation of possible vulnerable scenarios and proposes a strategy to alleviate the technical and economic impacts due to prospective cascading failures. The presented optimization methodology was tested using the IEEE-39 bus test network and a benchmark was performed between the proposed approach and a time domain analysis software model (EMTP). The obtained results indicate the potential of analysis approach in evaluating low-risk but high-impact vulnerabilities in power systems.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献