Seven-Year Changes in Bulk Density Following Forest Harvesting and Machine Trafficking in Alberta, Canada

Author:

McNabb David H.,Startsev Andrei

Abstract

Processes responsible for natural recovery of compacted forest soils are poorly understood, making estimating their recovery problematic. Bulk density was measured over 7 years at nine boreal forest sites in Alberta, Canada, where harvest-only and three skidding treatments were installed (~10,000 samples). Air and soil temperatures, soil moisture and redox potential, and snow depth were also measured on the harvest-only and adjacent seven-cycle skid trail. Significant increases in bulk density occurred when the soil water potential was wetter than −25 kPa. After 1 year, an additional significant increase in bulk density of 0.03 Mg m−3 was measured across all treatments, soil depths, and sites. The increase is attributed to the soil mechanics process of rebound and disruption of soil biological processes. By year 7, the secondary increase in bulk density had recovered in trafficked soil, but not on the harvest-only area. Some soil freezing had no effect on bulk density, which was moderated by the depth of the snowpack. The array of soil physical processes, soil texture, water supply, mechanics of water freezing in soil, and weather required to make soil freezing an effective decompacting agent did not occur. The shrink–swell process was not relevant because the soils remained wet. As a result, the bulk density of the trafficked soil failed to recover after 7 years to a depth of 20 cm. The freeze–thaw process as a decompaction agent is far more complex than commonly assumed, and its effectiveness cannot be assumed because soil temperatures below 0 °C are measured.

Publisher

MDPI AG

Subject

Forestry

Reference82 articles.

1. Response Of Plants To The Physical Effects Of Soil Compaction

2. Compaction of forest soils. A review

3. Designing Skidtrails Systems to Reduce Soil Impacts from Tractive Logging Machines;Froehlich,1981

4. Minimizing soil compaction in Pacific Northwest forests;Froehlich,1984

5. Soil compaction in cropping systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3