Community Formation as a Byproduct of a Recommendation System: A Simulation Model for Bubble Formation in Social Media

Author:

Bagnoli FrancoORCID,de Bonfioli Cavalcabo’ GuidoORCID,Casu Banedetto,Guazzini AndreaORCID

Abstract

We investigate the problem of the formation of communities of users that selectively exchange messages among them in a simulated environment. This closed community can be seen as the prototype of the bubble effect, i.e., the isolation of individuals from other communities. We develop a computational model of a society, where each individual is represented as a simple neural network (a perceptron), under the influence of a recommendation system that honestly forward messages (posts) to other individuals that in the past appreciated previous messages from the sender, i.e., that showed a certain degree of affinity. This dynamical affinity database determines the interaction network. We start from a set of individuals with random preferences (factors), so that at the beginning, there is no community structure at all. We show that the simple effect of the recommendation system is not sufficient to induce the isolation of communities, even when the database of user–user affinity is based on a small sample of initial messages, subject to small-sampling fluctuations. On the contrary, when the simulated individuals evolve their internal factors accordingly with the received messages, communities can emerge. This emergence is stronger the slower the evolution of individuals, while immediate convergence favors to the breakdown of the system in smaller communities. In any case, the final communities are strongly dependent on the sequence of messages, since one can get different final communities starting from the same initial distribution of users’ factors, changing only the order of users emitting messages. In other words, the main outcome of our investigation is that the bubble formation depends on users’ evolution and is strongly dependent on early interactions.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference31 articles.

1. A short review on susceptibility to falling for fake political news

2. The Paradox of Information Access: On Modeling Social-Media-Induced Polarization;Xu;arXiv,2020

3. Methods of recommender system: A review

4. Curation Algorithms and Filter Bubbles in Social Networks

5. Thinking, Fast and Slow;Kahneman,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3