Dynamic Allocation of SDN Controllers in NFV-Based MEC for the Internet of Vehicles

Author:

Simões RhodneyORCID,Dias Kelvin,Martins Ricardo

Abstract

The expected huge amount of connected cars and applications with varying Quality of Service (QoS) demands still depend on agile/flexible networking infrastructure to deal with dynamic service requests to the control plane, which may become a bottleneck for 5G and Beyond Software-Defined Network (SDN) based Internet of Vehicles (IoV). At the heart of this issue is the need for an architecture and optimization mechanisms that benefit from cutting edge technologies while granting latency bounds in order to control and manage the dynamic nature of IoV. To this end, this article proposes an autonomic software-defined vehicular architecture grounded on the synergy of Multi-access Edge Computing (MEC) and Network Functions Virtualization (NFV) along with a heuristic approach and an exact model based on linear programming to efficiently optimize the dynamic resource allocation of SDN controllers, ensuring load balancing between controllers and employing reserve resources for tolerance in case of demand variation. The analyses carried out in this article consider: (a) to avoid waste of limited MEC resources, (b) to devise load balancing among controllers, (c) management complexity, and (d) to support scalability in dense IoV scenarios. The results show that the heuristic efficiently manages the environment even in highly dynamic and dense scenarios.

Funder

FACEPE

CNPq

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference54 articles.

1. Survey on IoV routing protocols: Security and network architecture

2. United States Autonomous Car Market—Growth, Trends, and Fore-Cast (2019–2024)https://www.businesswire.com/news/home/20191223005261/en/United-States-Autonomous-Car-Market-Analysis-Competitive-Landscape-Growth-Trends-and-Forecasts-2019-2024—ResearchAndMarkets.com

3. Vehicular Communication Networks in the Automated Driving Era

4. Internet of vehicles in big data era

5. Evolutionary V2X Technologies Toward the Internet of Vehicles: Challenges and Opportunities

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3