Energy and Delay Aware Data Aggregation in Routing Protocol for Internet of Things

Author:

Sennan Sankar,Balasubramaniyam Sathiyabhama,Luhach Ashish Kr.ORCID,Ramasubbareddy SomulaORCID,Chilamkurti NaveenORCID,Nam YunyoungORCID

Abstract

Energy conservation is one of the most critical problems in Internet of Things (IoT). It can be achieved in several ways, one of which is to select the optimal route for data transfer. IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) is a standardized routing protocol for IoT. The RPL changes its path frequently while transmitting the data from source to the destination, due to high data traffic in dense networks. Hence, it creates data traffic across the nodes in the networks. To solve this issue, we propose Energy and Delay Aware Data aggregation in Routing Protocol (EDADA-RPL) for IoT. It has two processes, namely parent selection and data aggregation. The process of parent selection uses routing metric residual energy (RER) to choose the best possible parent for data transmission. The data aggregation process uses the compressed sensing (CS) theory in the parent node to combine data packets from the child nodes. Finally, the aggregated data transmits from a downward parent to the sink. The sink node collects all the aggregated data and it performs the reconstruction operation to get the original data of the participant node. The simulation is carried out using the Contiki COOJA simulator. EDADA-RPL’s performance is compared to RPL and LA-RPL. The EDADA-RPL offers good performance in terms of network lifetime, delay, and packet delivery ratio.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Internet of things (iot): A survey on empowering technologies, research opportunities and applications;Sankar;Int. J. Pharm. Technol.,2016

2. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture

3. Interoperability Among Internet of Things (IoT) Components Using Model-Driven Architecture Approach;Kaur,2019

4. Composite metric based energy efficient routing protocol for internet of things;Sankar;Int. J. Intell. Eng. Syst.,2017

5. Improved Design of Vertical Cavity Surface Emitting Laser for 3D Sensing in Internet of Things Applications;Goyal,2020

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3