Morphological Precision Assessment of Reconstructed Surface Models for a Coral Atoll Lagoon

Author:

Wang Qi,Su Fenzhen,Zhang Yu,Jiang Huiping,Cheng Fei

Abstract

In addition to remote-sensing monitoring, reconstructing morphologic surface models through interpolation is an effective means to reflect the geomorphological evolution, especially for the lagoons of coral atolls, which are underwater. However, which interpolation method is optimal for lagoon geomorphological reconstruction and how to assess the morphological precision have been unclear. To address the aforementioned problems, this study proposed a morphological precision index system including the root mean square error (RMSE) of the elevation, the change rate of the local slope shape (CRLSS), and the change rate of the local slope aspect (CRLSA), and introduced the spatial appraisal and valuation approach of environment and ecosystems (SAVEE). In detail, ordinary kriging (OK), inverse distance weighting (IDW), radial basis function (RBF), and local polynomial interpolation (LPI) were used to reconstruct the lagoon surface models of a typical coral atoll in South China Sea and the morphological precision of them were assessed, respectively. The results are as follows: (i) OK, IDW, and RBF exhibit the best performance in terms of RMSE (0.3584 m), CRLSS (51.43%), and CRLSA (43.29%), respectively, while with insufficiently robust when considering all three aspects; (ii) IDW, LPI, and RBF are suitable for lagoon slopes, lagoon bottoms, and patch reefs, respectively; (iii) The geomorphic decomposition scale is an important factor that affects the precision of geomorphologic reconstructions; and, (iv) This system and evaluation approach can more comprehensively consider the differences in multiple precision indices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3