Development of Technology for Identification of Climate Patterns during Floods Using Global Climate Model Data with Convolutional Neural Networks

Author:

Jung Jaewon,Han Heechan

Abstract

Given the increasing climate variability, it is becoming difficult to predict flooding events. We may be able to manage or even prevent floods if detecting global climate patterns, which affect flood occurrence, and using them to make predictions are possible. In this study, we developed a deep learning-based model to learn climate patterns during floods and determine flood-induced climate patterns using a convolutional neural network. We used sea surface temperature anomaly as the learning data, after classifying them into four cases according to the spatial extent. The flood-induced climate pattern identification model showed an accuracy of ≥89.6% in all cases, indicating its application for the determination of patterns. The obtained results can help predict floods by recognizing climate patterns of flood precursors and be insightful to international cooperation projects based on global climate data.

Funder

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3