Soil Type Rather Than Freezing Determines the Size of Soil-Root Plate of Silver Birch (Betula pendula Roth.) in the Eastern Baltic Region

Author:

Krišāns Oskars,Matisons RobertsORCID,Vuguls Jānis,Seipulis Andris,Elferts DidzisORCID,Samariks ValtersORCID,Saleniece Renāte,Jansons Āris

Abstract

In the Eastern Baltic region, severe windstorms increase both in frequency and magnitude, particularly during the dormancy period, increasing wind damage risks even more for silver birch (Betula pendula Roth.), which is considered to be less vulnerable forest tree species. Tree anchorage, particularly the properties of soil–root plate, determines the type of fatal failures trees experience under extreme wind loads and, subsequently, the potential for timber recovery during salvage logging. The link between soil–root plate properties and fatal failure types was assessed by conducting destructive static pulling tests; trees on freely draining minerals and drained deep peat soils under frozen and non-frozen soil conditions were tested. The size of the root plate did not differ between trees experiencing uprooting or stem breakage but was largely affected by soil type. Frozen soil conditions increased soil–root anchorage (via binding between soil particles) and, hence, the frequency of stem breakage without changing the size of soil–root plate. However, the lack of frozen soil conditions is among the main climatic risks for forestry within the region. The differences in the properties of soil–root plate implies plasticity in adaptation to wind loadings relative to birch, suggesting a potential for managing different types of fatal failure of trees and, subsequently, the share of retrievable timber in cases of salvage logging.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3