Theoretical and Experimental Analysis of a New Intelligent Charging Controller for Off-Board Electric Vehicles Using PV Standalone System Represented by a Small-Scale Lithium-Ion Battery

Author:

Makeen PeterORCID,Ghali Hani A.,Memon SaimORCID

Abstract

Electric vehicles are rapidly infiltrating the power grid worldwide, initiating an immediate need for a smart charging technique to maintain the stability and robustness of the charging process despite the generation type. Renewable energy sources (RESs), especially photovoltaic (PV), are becoming the essential source for electric vehicle charging points. The stochastic behavior of the PV output power affects the power conversion for regulating the battery charger voltage levels, which influences the battery to overheat and degrade. This study presents a PV standalone smart charging process for off-board plug-in electric vehicles, represented by a small-scale lithium-ion battery based on the multistage charging currents (MSCC) protocol. The charger comprises a DC–DC buck converter controlled by an artificial neural network predictive controller (NNPC), trained and supported by the long short-term memory recurrent neural network (LSTM). The LSTM network model was utilized in the offline forecasting of the PV output power, which was fed to the NNPC as the training data. Additionally, it was used as an alarm flag for any possible PV output shortage during the charging process in the long- and short-term prediction to be supported by any other electricity source. The NNPC–LSTM controller was compared with the fuzzy logic and the conventional PID controllers while varying the input voltage and implementing the MSCC protocol. The proposed charging controller perfectly ensured that the minimum battery terminal voltage ripple and charging current ripple reached 1 mV and 1 mA, respectively, with a very high-speed response of 1 ms in reaching the predetermined charging current stages. The present simulated and experimental results are in good agreement with the previous related work in the literature survey.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3