Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF

Author:

Wang Dongyu,Cui Xiwen,Niu Dongxiao

Abstract

Improving the accuracy of wind power forecasting can guarantee the stable dispatch and safe operation of the grid system. Here, we propose an EMD-PCA-RF-LSTM wind power forecasting model to solve problems in traditional wind power forecasting such as incomplete consideration of influencing factors, inaccurate feature identification, and complex space–time relationships between variables. The proposed model incorporates Empirical Mode Decomposition (EMD), Principal Component Analysis (PCA), Random Forest (RF), and Long Short-Term Memory (LSTM) neural networks, And environmental factors are filtered by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm when pre-processing the data. First, the environmental factors are extended by the EMD algorithm to reduce the non-stationarity of the series. Second, the key influence series are extracted by the PCA algorithm in order to remove noisy information, which can seriously interfere with the data regression analysis. The data are then subjected to further feature extraction by calculating feature importance through the RF algorithm. Finally, the LSTM algorithm is used to perform dynamic time modeling of multivariate feature series for wind power forecasting. The above combined model is beneficial for analyzing the effects of different environmental factors on wind power and for obtaining more accurate prediction results. In a case study, the proposed combined forecasting model was verified using actual measured data from a power station. The results indicate that the proposed model provides the most accurate results when compared to benchmark models: MSE 7.26711 MW, RMSE 2.69576 MW, MAE 1.73981 MW, and adj-R2 0.9699203s.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference58 articles.

1. Wind Power Prediction Based on Wavelet Transform and RBF Neural Network;Zheng;Lab. Res. Explor.,2019

2. Wind Power Prediction Method Using Hybrid Kernel LSSVM with Batch Feature;Liu;Acta Autom. Sin.,2020

3. Research on Wind Power Prediction Based on Optimal Combination of NSGA-II Algorithm;Gao;Water Power,2020

4. An Efficient Approach to Power System Uncertainty Analysis With High-Dimensional Dependencies

5. Ultra-Short-Term Multistep Wind Power Prediction Based on Improved EMD and Reconstruction Method Using Run-Length Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3