Occurrence of Low-Level Jets over the Eastern U.S. Coastal Zone at Heights Relevant to Wind Energy

Author:

Aird Jeanie A.,Barthelmie Rebecca J.ORCID,Shepherd Tristan J.,Pryor Sara C.ORCID

Abstract

Two years of high-resolution simulations conducted with the Weather Research and Forecasting (WRF) model are used to characterize the frequency, intensity and height of low-level jets (LLJ) over the U.S. Atlantic coastal zone. Meteorological conditions and the occurrence and characteristics of LLJs are described for (i) the centroids of thirteen of the sixteen active offshore wind energy lease areas off the U.S. east coast and (ii) along two transects extending east from the U.S. coastline across the northern lease areas (LA). Flow close to the nominal hub-height of wind turbines is predominantly northwesterly and southwesterly and exhibits pronounced seasonality, with highest wind speeds in November, and lowest wind speeds in June. LLJs diagnosed using vertical profiles of modeled wind speeds from approximately 20 to 530 m above sea level exhibit highest frequency in LA south of Massachusetts, where LLJs are identified in up to 12% of hours in June. LLJs are considerably less frequent further south along the U.S. east coast and outside of the summer season. LLJs frequently occur at heights that intersect the wind turbine rotor plane, and at wind speeds within typical wind turbine operating ranges. LLJs are most frequent, intense and have lowest core heights under strong horizontal temperature gradients and lower planetary boundary layer heights.

Funder

United States Department of Energy

National Science Foundation

New York State Energy Research and Development Authority

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. Extreme Wind and Waves in U.S. East Coast Offshore Wind Energy Lease Areas

2. U.S. Offshore Wind Power Economic Impact Assessment. American Clean Power Associationhttps://supportoffshorewind.org/wp-content/uploads/sites/6/2020/03/AWEA_Offshore-Wind-Economic-ImpactsV3.pdf

3. Wind power production from very large offshore wind farms

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3