Abstract
In this paper, a linearly approximate signal detection scheme is proposed in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. The huge MIMO-OFDM system, which uses many transmit antennas and high order modulation, requires a detection scheme at the receiver with very low complexity for practical implementation. In the proposed detection scheme, one N × N MIMO-OFDM system is divided into N / 2 2 × 2 MIMO-OFDM systems for linear increase of complexity. After the partial zero-forcing (ZF), decision feedback equalizer (DFE) and QR decomposition-M algorithm (QRD-M) are applied to each 2 × 2 MIMO-OFDM system. Despite nonlinear detection schemes, the overall complexity of the proposed algorithm increases almost linearly because the DFE and the QRD-M are applied to 2 × 2 MIMO-OFDM systems. Also, the value of M in the QRD-M is fixed according to position of the center point in constellation for efficient signal detection. In simulation results, the proposed detection scheme has higher error performance and lower complexity than the conventional ZF. Also, the proposed detection scheme has very lower complexity than the conventional DFE, with slight loss of error performance.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献