AutoML Approach to Stock Keeping Units Segmentation

Author:

Jackson IlyaORCID

Abstract

A typical retailer carries 10,000 stock-keeping units (SKUs). However, these numbers may exceed hundreds of millions for giants such as Walmart and Amazon. Besides the volume, SKU data can also be high-dimensional, which means that SKUs can be segmented on the basis of various attributes. Given the data volumes and the multitude of potentially important dimensions to consider, it becomes computationally impossible to individually manage each SKU. Even though the application of clustering for SKU segmentation is common, previous studies do not address the problem of parametrization and model finetuning, which may be extremely tedious and time-consuming in real-world applications. Our work closes the research gap by proposing a solution that leverages automated machine learning for the automated cluster analysis of SKUs. The proposed framework for automated SKU segmentation incorporates minibatch K-means clustering, principal component analysis, and grid search for parameter tuning. It operates on top of the Apache Parquet file format, an efficient, structured, compressed, column-oriented, and big-data-friendly format. The proposed solution was tested on the basis of a real-world dataset that contained data at the pallet level.

Publisher

MDPI AG

Subject

Computer Science Applications,General Business, Management and Accounting

Reference55 articles.

1. Phadnis, S.S., Sheffi, Y., and Caplice, C. (2022). Strategic Planning for Dynamic Supply Chains, Springer International Publishing.

2. Jackson, I. (2022, January 4–7). Deep Reinforcement Learning for Supply Chain Synchronization. Proceedings of the Annual Hawaii International Conference on System Sciences, Maui, HI, USA.

3. US Department of Commerce (2022, October 15). Manufacturing and Trade Inventories and Sales, Main Page, US Census Bureau, Available online: https://www.census.gov/mtis/index.html.

4. Effect of Interactivity Level and Price on Online Purchase Intention;J. Theor. Appl. Electron. Commer. Res.,2022

5. Universals in Management Planning and Control;Manag. Rev.,1954

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3