Behavioral Patterns beyond Posting Negative Reviews Online: An Empirical View

Author:

Sun Menghan,Zhao JichangORCID

Abstract

Negative reviews on e-commerce platforms are posted to express complaints about unsatisfactory experiences. However, the exact knowledge of how online consumers post negative reviews still remains unknown. To obtain an in-depth understanding of how users post negative reviews on e-commerce platforms, a big-data-driven approach with text mining and sentiment analysis is employed to detect various behavioral patterns. Specifically, using 1,450,000 negative reviews from JD.com, the largest B2C platform in China, the posting patterns from temporal, perceptional and emotional perspectives are comprehensively explored. A massive amount of consumers across four sectors in recent 10 years is split into five levels to reveal group discrepancies at a fine resolution. The circadian rhythms of negative reviewing after making purchases are found, suggesting stable habits in online consumption. Consumers from lower levels express more intensive negative feelings, especially on product pricing and customer service attitudes, while those from upper levels demonstrate a stronger momentum of negative emotion. The value of negative reviews from higher-level consumers is thus unexpectedly highlighted because of less emotionalization and less biased narration, while the longer-lasting characteristic of these consumers’ negative responses also stresses the need for more attention from sellers. Our results shed light on implementing distinguished proactive strategies in different buyer groups to help mitigate the negative impact due to negative reviews.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computer Science Applications,General Business, Management and Accounting

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding customer behavior by mapping complaints to personality based on social media textual data;Data Technologies and Applications;2024-09-09

2. Research on Credit Regulation Mechanism of E-commerce Platform Based on Evolutionary Game Theory;Journal of Systems Science and Systems Engineering;2024-04-22

3. Revolutionizing Retail: A Mini Review of E-commerce Evolution;Journal of Digital Marketing and Communication;2023-12-26

4. Mapping Personality Traits to Customer Complaints: Framework for Personalized Customer Service;2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2023-07-13

5. Employee Behavior Analysis Towards Multi-Label Classification of Customer Reviews;Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3