Abstract
Maritime moving target detection and tracking through particle filter based track-before-detect (PF-TBD) has significant practical value for airborne forward-looking scanning radar. However, villainous weather and surging of ocean waves make it extremely difficult to accurately obtain a statistical model for sea clutter. As the likelihood ratio calculation in PF-TBD is dependent on the distribution of the clutter, the performance of traditional distribution-based PF-TBD seriously declines. To resolve these difficulties, this paper proposes a new target detection and tracking method, named spectral-residual-binary-entropy-based PF-TBD (SRBE-PF-TBD), which is independent from the prior knowledge of sea clutter. In the proposed method, the likelihood ratio calculation is implemented by first extracting the spectral residual of the input image to obtain the saliency map, and then constructing likelihood ratio through a binarization processing and information entropy calculation. Simulation results show that the proposed method had superior performance of maritime moving target detection and tracking.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献