Development of an HTS-SQUID-Based Receiver for Long-Range Magnetic Induction Communication in Extreme Environments

Author:

Li Yulong1,Xu Tiequan1ORCID,Wang Yue1,Wang Furen1,Gan Zizhao1

Affiliation:

1. Applied Superconductivity Center and State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China

Abstract

The communication range of magnetic-induction (MI) technology in extreme environments such as underwater or underground is limited by the dipole-like attenuation behavior of the magnetic field as well as the eddy current induced loss in conductive media, and therefore a highly sensitive receiver is generally required. In this work, we propose the use of a highly sensitive superconducting quantum interference device (SQUID) in MI communication and try to provide a comprehensive investigation on developing a SQUID-based receiver for practical MI applications. A portable receiver scheme integrating a SQUID sensor and a coil-based flux transformer was proposed. The high sensitivity and long-range communication capability of the proposed receiver was experimentally demonstrated by spectroscopic measurements and reception experiments on a receiver prototype. Based on the experimental demonstrations, the sensitivity optimization of the proposed scheme was further investigated by simulation studies, which suggest that a communication distance exceeding 100 m and a channel capacity of ∼20 kb/s in underwater environment could be achieved based upon the optimization of the developed prototype. The results presented in this work have highlighted the potential of deploying SQUID sensors for long-range MI applications in extreme environments.

Funder

National High-Tech Research

Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3