Doppler Modeling and Simulation of Train-to-Train Communication in Metro Tunnel Environment

Author:

Zhao PengyuORCID,Wang XiaoyongORCID,Zhang Kai,Jin Yanliang,Zheng Guoxin

Abstract

The communication system of urban rail transit is gradually changing from train-to-ground (T2G) to train-to-train (T2T) communication. The subway can travel at speeds of up to 200 km/h in the tunnel environment, and communication between trains can be conducted via millimeter waves with minimum latency. A precise channel model is required to test the reliability of T2T communication over a non-line-of-sight (NLoS) Doppler channel in a tunnel scenario. In this paper, the description of the ray angle for a T2T communication terminal is established, and the mapping relationship of the multipath signals from the transmitter to the receiver is established. The channel parameters including the angle, amplitude, and mapping matrix from the transmitter to the receiver are obtained by the ray-tracing method. In addition, the channel model for the T2T communication system with multipath propagations is constructed. The Doppler spread simulation results in this paper are consistent with the RT simulation results. A channel physics modelling approach using an IQ vector phase shifter to achieve Doppler spread in the RF domain is proposed when paired with the Doppler spread model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3