Gradual Domain Adaptation with Pseudo-Label Denoising for SAR Target Recognition When Using Only Synthetic Data for Training

Author:

Sun Yuanshuang1ORCID,Wang Yinghua1ORCID,Liu Hongwei1,Hu Liping2,Zhang Chen1ORCID,Wang Siyuan1

Affiliation:

1. National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

2. Science and Technology on Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing 100854, China

Abstract

Because of the high cost of data acquisition in synthetic aperture radar (SAR) target recognition, the application of synthetic (simulated) SAR data is becoming increasingly popular. Our study explores the problems encountered when training fully on synthetic data and testing on measured (real) data, and the distribution gap between synthetic and measured SAR data affects recognition performance under the circumstances. We propose a gradual domain adaptation recognition framework with pseudo-label denoising to solve this problem. As a warm-up, the feature alignment classification network is trained to learn the domain-invariant feature representation and obtain a relatively satisfactory recognition result. Then, we utilize the self-training method for further improvement. Some pseudo-labeled data are selected to fine-tune the network, narrowing the distribution difference between the training data and test data for each category. However, the pseudo-labels are inevitably noisy, and the wrong ones may deteriorate the classifier’s performance during fine-tuning iterations. Thus, we conduct pseudo-label denoising to eliminate some noisy pseudo-labels and improve the trained classifier’s robustness. We perform pseudo-label denoising based on the image similarity to keep the label consistent between the image and feature domains. We conduct extensive experiments on the newly published SAMPLE dataset, and we design two training scenarios to verify the proposed framework. For Training Scenario I, the framework matches the result of neural architecture searching and achieves 96.46% average accuracy. For Training Scenario II, the framework outperforms the results of other existing methods and achieves 97.36% average accuracy. These results illustrate the superiority of our framework, which can reach state-of-the-art recognition levels with appropriate stability.

Funder

National Natural Science Foundation of China

the 111 Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3