Effect of UV Scattering on Detection Limit of SO2 Cameras

Author:

Wu Kuijun1,Zhang Zihao1,Guo Jianjun1,Hu Xiangrui1,Li Juan2,Li Faquan3,He Weiwei1

Affiliation:

1. School of Physics and Electronic Information, Yantai University, Yantai 264005, China

2. Key Laboratory of Spectral Imaging Technology of Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

3. Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

Abstract

SO2 ultraviolet (UV) camera technology has been successfully applied to the accurate imaging detection of pollutant gas concentration; however, the actual detection ability of this technology has not been intensively studied, especially the detection accuracy and limit under the influence of the light dilution effect. Here, we theoretically and experimentally investigate the UV scattering on SO2 concentration inversion. The radiation transfer model of the light dilution effect is reconstructed, and the concept of the optimized detection limit is discussed. An outfield experiment is conducted on a ship exhaust, and the results are compared with the theoretical calculations, which indicates that the detection limit of the SO2 UV camera is 15 ppm·m at close range and increases to 25 ppm·m when the detection distance is 3.5 km. This study proves that the detection limit of the SO2 UV camera deteriorates with the decreasing atmospheric visibility, the lengthening detection distance, and the increasing aerosol content within the plume. In addition, the hardware indicators of the camera systems also play a key role in the detection limit, and taking reasonable image processing can significantly release the instruments’ performance and extend the applicability of the SO2 UV camera.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Youth Innovation Technology Project of Higher School in Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3