Towards Digital Twinning on the Web: Heterogeneous 3D Data Fusion Based on Open-Source Structure

Author:

La Guardia Marcello1ORCID,Koeva Mila2ORCID

Affiliation:

1. Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 8, 90128 Palermo, Italy

2. Faculty of Geo-Information Science and Earth Observation, University of Twente, 7500 AE Enschede, The Netherlands

Abstract

Recent advances in Computer Science and the spread of internet connection have allowed specialists to virtualize complex environments on the web and offer further information with realistic exploration experiences. At the same time, the fruition of complex geospatial datasets (point clouds, Building Information Modelling (BIM) models, 2D and 3D models) on the web is still a challenge, because usually it involves the usage of different proprietary software solutions, and the input data need further simplification for computational effort reduction. Moreover, integrating geospatial datasets acquired in different ways with various sensors remains a challenge. An interesting question, in that respect, is how to integrate 3D information in a 3D GIS (Geographic Information System) environment and manage different scales of information in the same application. Integrating a multiscale level of information is currently the first step when it comes to digital twinning. It is needed to properly manage complex urban datasets in digital twins related to the management of the buildings (cadastral management, prevention of natural and anthropogenic hazards, structure monitoring, etc.). Therefore, the current research shows the development of a freely accessible 3D Web navigation model based on open-source technology that allows the visualization of heterogeneous complex geospatial datasets in the same virtual environment. This solution employs JavaScript libraries based on WebGL technology. The model is accessible through web browsers and does not need software installation from the user side. The case study is the new building of the University of Twente—Faculty of Geo-Information (ITC), located in Enschede (the Netherlands). The developed solution allows switching between heterogeneous datasets (point clouds, BIM, 2D and 3D models) at different scales and visualization (indoor first-person navigation, outdoor navigation, urban navigation). This solution could be employed by governmental stakeholders or the private sector to remotely visualize complex datasets on the web in a unique visualization, and take decisions only based on open-source solutions. Furthermore, this system can incorporate underground data or real-time sensor data from the IoT (Internet of Things) for digital twinning tasks.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3