Frequency Domain Electromagnetic System Based on Unmanned Aerial Vehicles Platform for Detecting Shallow Subsurface Targets

Author:

Li Shiyan123,Xing Kang123,Zhang Xiaojuan12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Due to the advantages of being nondestructive, rapid, and convenient, the electromagnetic detection method has attracted growing interest in the field of shallow subsurface detection. With the rapid development of unmanned aerial vehicle (UAV) technology, the use of the UAV platform for measurement can not only improve work efficiency but also avoid the significant losses that may be caused by humans working in dangerous areas. Therefore, we propose a broadband frequency domain electromagnetic system AFEM-3 based on a UAV platform for shallow subsurface targets detection (within less than 2 m). The sensor head adopts a concentric planar coil structure with a high spatial resolution, and a bucking coil connected in reverse series with the transmitting coil is used to suppress the primary field at the receiving coil. We designed a transmitting module based on unipolar frequency multiplication sinusoidal pulse width modulation technology that can generate multi-frequency arbitrary combination transmitting waveforms with low total harmonic distortion. It can also be matched to a variety of different transmitter coils by using the same hardware circuit. In addition, the global navigation satellite system and inertial measurement unit are integrated on the sensor head. The measurement response value, position, and attitude information can be displayed in real-time through the host computer. Through the static experiment of a standard coil, we verified the consistency between the AFEM-3 system with the theory. The performance of the system was evaluated through field experiments. The experimental results show that the system can effectively detect multiple metal targets in shallow subsurface areas. For different metal targets, the AFEM-3 system can provide obvious frequency domain characteristics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An active electromagnetic detection method for underwater metal targets;Third International Conference on Computer Technology, Information Engineering, and Electron Materials (CTIEEM 2023);2024-04-01

2. UAV Time-Domain Electromagnetic System and a Workflow for Subsurface Targets Detection;Remote Sensing;2024-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3