Resolving Ambiguities in SHARAD Data Analysis Using High-Resolution Digital Terrain Models

Author:

Desage Léopold1ORCID,Herique Alain1ORCID,Douté Sylvain1ORCID,Zine Sonia1,Kofman Wlodek12ORCID

Affiliation:

1. Université Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France

2. Centrum Badan Kosmicznych Polskiej Akademii Nauk (CBK PAN), Bartycka 18A, PL-00–716 Warsaw, Poland

Abstract

The SHAllow RADar (SHARAD) onboard Mars Reconnaissance Orbiter (MRO) is a 20 MHz Synthetic Aperture Radar (SAR) that probes the first hundreds of meters of the Martian subsurface. In order to interpret the detection of subsurface interfaces with ground penetrating radars, simulations using Digital Terrain Models (DTM) are necessary. This methodology paper focuses on the analysis of the first tens of meters of the Martian subsurface with SHARAD, comparing the use of different high-resolution DTMs for radar simulation, namely, from the High-Resolution Stereo Camera (HRSC) onboard the Mars Express and from the Context Camera (CTX) onboard MRO. The region of Terra Cimmeria was chosen as a demonstration area. It is a highly cratered southern midlatitude region, where, as will be discussed, the higher resolution of the aforementioned terrain models is mandatory to describe the surface at an acceptable level of detail for shallow subsurface radar interpretation. With a DTM corrected by photoclinometry using CTX imagery, we show that a reflector that was visible on SHARAD data but not on the simulation made with an HRSC DTM is, in fact, a surface echo that was not reproduced by the HRSC surface model. We also show that, unlike laser altimetry DTMs, optical DTMs are prone to artifacts that can make radar analysis more complicated for some scenarios. Reciprocally, we show that the comparison between radar and its corresponding simulated data is a way of assessing a DTM’s quality, which is especially useful in missions where ground control points are lacking, unlike Martian observations.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3