MINDED-FBA: An Automatic Remote Sensing Tool for the Estimation of Flooded and Burned Areas

Author:

Oliveira Eduardo R.12,Disperati Leonardo1ORCID,Alves Fátima L.2ORCID

Affiliation:

1. Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, 53100 Siena, Italy

2. COPING TEAM—Coastal and Ocean Planning Governance, CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

This paper presents the MINDED-FBA, a remote-sensing-based tool for the determination of both flooded and burned areas. The tool, freely distributed as a QGIS plugin, consists of an adaptation and development of the previously published Multi Index Image Differencing methods (MINDED and MINDED-BA). The MINDED-FBA allows the integration and combination of a wider diversity of satellite sensor datasets, now including the synthetic aperture radar (SAR), in addition to optical multispectral data. The performance of the tool is evaluated for six case studies located in Portugal, Australia, Pakistan, Italy, and the USA. The case studies were chosen for representing a wide range of conditions, such as type of hazardous event (i.e., flooding or fire), scale of application (i.e., local or regional), site specificities (e.g., climatic conditions, morphology), and available satellite data (optical multispectral and SAR). The results are compared in respect to reference delineation datasets (mostly from the Copernicus EMS). The application of the MINDED-FBA tool with SAR data is particularly effective to delineate flooding, while optical multispectral data resulted in the best performances for burned areas. Nonetheless, the combination of both types of remote sensing data (data fusion approach) also provides high correlations with the available reference datasets. The MINDED-FBA tool could represent a new near-real-time solution, capable of supporting emergency response measures.

Funder

DSFTA-UNISI

FCT/MCTES

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3