An Increase of GNSS Data Time Rate and Analysis of the Carrier Phase Spectrum

Author:

Demyanov Vladislav12ORCID,Danilchuk Ekaterina3,Sergeeva Maria45,Yasyukevich Yury1ORCID

Affiliation:

1. Institute of Solar-Terrestrial Physics, Siberian Branch of Russian Academy of Sciences, Irkutsk 664033, Russia

2. Department of Automatic and Telecommunication, Irkutsk State Transport University, Irkutsk 664074, Russia

3. Department of Radio-Wave Physics and Radio-Engineering, Irkutsk State University, Irkutsk 664003, Russia

4. SCiESMEX, LANCE, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Antigua Carretera a Patzcuaro 8701, Morelia 58089, Michoacan, Mexico

5. CONACYT, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Antigua Carretera a Patzcuaro 8701, Morelia 58089, Michoacan, Mexico

Abstract

Natural hazards and geomagnetic disturbances can generate a combination of atmospheric and ionospheric waves of different scales. The carrier phase of signals of global navigation satellite system (GNSS) can provide the highest efficiency to detect and study the weak ionospheric disturbances in contrast to total electron content (TEC) and TEC-based indices. We consider the border between the informative part of the carrier phase spectrum and the uninformative noises—the deviation frequency—as the promising means to improve the GNSS-based disturbance detection algorithms. The behavior of the deviation frequency of the carrier phase spectra was studied under quiet and disturbed geomagnetic conditions. The results showed that the deviation frequency value increases under magnetic storms. This effect was revealed for all GNSS constellations and signals regardless the GNSS type, receiver type/make and data rate (50 or 100 Hz). For the 100 Hz data, the most probable values of the deviation frequency grouped within ~28–40 Hz under quiet condition and shifted to ~37–48 Hz during the weak geomagnetic storms. Additionally, the lower values of deviation frequency of ~18–25 Hz almost disappear from the distribution of the deviation frequencies as it becomes narrower during geomagnetic storms. Considering that the small-scale irregularities shift the deviation frequencies, we can use this indicator as a “red alert” for weakest small-scale irregularities when the deviation frequency reaches ~35–50 Hz.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3