Dysregulated UPR and ER Stress Related to a Mutation in the Sdf2l1 Gene Are Involved in the Pathophysiology of Diet-Induced Diabetes in the Cohen Diabetic Rat

Author:

Yagil Chana,Varadi-Levi Ronen,Ifrach ChenORCID,Yagil Yoram

Abstract

The Cohen Diabetic rat is a model of type 2 diabetes mellitus that consists of the susceptible (CDs/y) and resistant (CDr/y) strains. Diabetes develops in CDs/y provided diabetogenic diet (DD) but not when fed regular diet (RD) nor in CDr/y given either diet. We recently identified in CDs/y a deletion in Sdf2l1, a gene that has been attributed a role in the unfolded protein response (UPR) and in the prevention of endoplasmic reticulum (ER) stress. We hypothesized that this deletion prevents expression of SDF2L1 and contributes to the pathophysiology of diabetes in CDs/y by impairing UPR, enhancing ER stress, and preventing CDs/y from secreting sufficient insulin upon demand. We studied SDF2L1 expression in CDs/y and CDr/y. We evaluated UPR by examining expression of key proteins involved in both strains fed either RD or DD. We assessed the ability of all groups of animals to secrete insulin during an oral glucose tolerance test (OGTT) over 4 weeks, and after overnight feeding (postprandial) over 4 months. We found that SDF2L1 was expressed in CDr/y but not in CDs/y. The pattern of expression of proteins involved in UPR, namely the PERK (EIF2α, ATF4 and CHOP) and IRE1 (XBP-1) pathways, was different in CDs/y DD from all other groups, with consistently lower levels of expression at 4 weeks after initiation of DD and coinciding with the development of diabetes. In CDs/y RD, insulin secretion was mildly impaired, whereas in CDs/y DD, the ability to secrete insulin decreased over time, leading to the development of the diabetic phenotype. We conclude that in CDs/y DD, UPR participating proteins were dysregulated and under-expressed at the time point when the diabetic phenotype became overt. In parallel, insulin secretion in CDs/y DD became markedly impaired. Our findings suggest that under conditions of metabolic load with DD and increased demand for insulin secretion, the lack of SDF2L1 expression in CDs/y is associated with UPR dysregulation and ER stress which, combined with oxidative stress previously attributed to the concurrent Ndufa4 mutation, are highly likely to contribute to the pathophysiology of diabetes in this model.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3