Abstract
In Parkinson’s disease, hypercholinism in the striatum occurs, with the consequence of disturbed motor functions. Direct application of Botulinum neurotoxin-A in the striatum of hemi-Parkinsonian rats might be a promising anticholinergic therapeutic option. Here, we aimed to determine the spread of intrastriatally injected BoNT-A in the brain as well as the duration of its action based on the distribution of cleaved SNAP-25. Rats were injected with 1 ng of BoNT-A into the right striatum and the brains were examined at different times up to one year after treatment. In brain sections immunohistochemically stained for BoNT-A, cleaved SNAP-25 area-specific densitometric analyses were performed. Increased immunoreactivity for cleaved SNAP-25 was found in brain regions other than the unilaterally injected striatum. Most cleaved SNAP-25-ir was found in widespread areas ipsilateral to the BoNT-A injection, in some regions, however, immunoreactivity was also measured in the contralateral hemisphere. There was a linear relationship between the distance of a special area from the injected striatum and the time until its maximum averaged immunoreactivity was reached. Moreover, we observed a positive relationship for the area-specific distance from the injected striatum and its maximum immunoreactivity as well as for the connection density with the striatum and its maximum immunoreactivity. The results speak for a bidirectional axonal transport of BoNT-A after its application into the striatum to its widespread connected parts of the brain. Even one year after BoNT-A injection, cleaved SNAP-25 could still be detected.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献