DHA Induces Cell Death through the Production of ROS and the Upregulation of CHOP in Fibroblast-like Synovial Cells from Human Rheumatoid Arthritis Patients

Author:

Jeong MiniORCID,Shin Jong-Il,Cho Jaewook,Jeon Yong-Joon,Kim Jin-Hyun,Youn Jeehee,Lee KyunghoORCID

Abstract

Rheumatoid arthritis (RA) is an inflammatory disease marked by a massive proliferation of synovial cells in the joints. In this study, we investigated the pro-apoptotic effects of docosahexaenoic acid (DHA) in human fibroblast-like synovial cells from RA patients (RA-FLS). An in vitro study using MH7A cells showed that DHA treatment induced caspase-8-dependent apoptosis in a dose-dependent manner and reduced the TNF-α-mediated induction of MMP-9 and IL-1β. DHA also induced the phosphorylation of eIF2α, the expression of the ER stress markers ATF4 and C/EBP homologous protein (CHOP), and death receptor 5 (DR5). The knockdown of CHOP or DR5 increased cell viability and reduced apoptosis in DHA-treated cells. Furthermore, the knockdown of CHOP reduced DHA-mediated DR5 expression, while the overexpression of CHOP increased DR5 expression. We also found that DHA treatment induced the accumulation of reactive oxygen species (ROS), and pretreatment with the anti-oxidant Tiron effectively abrogated not only the expression of CHOP and DR5, but also DHA-induced apoptosis. Under this condition, cell viability was increased, while PARP-1 cleavage and caspase-8 activation were reduced. All the findings were reproduced in human primary synovial cells obtained from RA patients. These results suggest that the DHA-mediated induction of ROS and CHOP induced apoptosis through the upregulation of DR5 in RA-FLSs, and that CHOP could be used as a therapy for RA.

Funder

National Research Foundation of Korea

Ministry of Education

MSIT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3