Cirsium Setidens Water Extracts Containing Linarin Block Estrogen Deprivation-Induced Bone Loss in Mice

Author:

Oh Moon-Sik,Kim Soo-Il,Sim Young Eun,Park Sin-HyeORCID,Kang Min-Kyung,Kang Il-JunORCID,Lim Soon SungORCID,Kang Young-HeeORCID

Abstract

Osteoporosis is evident in postmenopausal women and is an osteolytic disease characterized by bone loss that further increases the susceptibility to bone fractures and frailty. The use of complementary therapies to alleviate postmenopausal osteoporosis is fairly widespread among women. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. This study aimed to determine whether Cirsium setidens water extracts (CSEs), the component linarin, and its aglycone acacetin blocked ovariectomy (OVX)-induced bone loss. This study employed OVX C57BL/6 female mice as a model for postmenopausal osteoporosis. CSEs, acacetin, or linarin was orally administrated to OVX mice at a dose of 20 mg/kg for 8 weeks. Surgical estrogen loss in mice for 8 weeks reduced bone mineral density (BMD) of mouse femur and serum 17β-estradiol level and enhanced the serum receptor activator of NF-κB ligand/osteoprotegerin ratio with uterine atrophy. CSEs and linarin reversed such adverse effects and enhanced femoral BMD in OVX mice. Oral administration of CSEs and linarin attenuated tartrate-resistant acid phosphate activity and the induction of αvβ3 integrins and proton suppliers in resorption lacunae in femoral bone tissue of OVX mice. In addition, CSEs and linarin curtailed the bone levels of cathepsin K and matrix metalloproteinase-9 responsible for osteoclastic bone resorption. On the other hand, CSEs and linarin enhanced the formation of trabecular bones in estrogen-deficient femur with increased induction of osteocalcin and osteopontin. Further, treatment with CSEs and linarin enhanced the collagen formation-responsive propeptide levels in the circulation along with the increase in the tissue non-specific alkaline phosphatase level in bone exposed to OVX. Supplementing CSEs, acacetin, or linarin to OVX mice elevated the formation of collagen fibers in OVX trabecular bone, evidenced using Picrosirius red staining. Accordingly, CSEs and linarin were effective in retarding osteoclastic bone resorption and promoting osteoblastic bone matrix mineralization under OVX conditions. Therefore, linarin, which is abundant in CSEs, may be a natural compound for targeting postmenopausal osteoporosis and pathological osteoresorptive disorders.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference36 articles.

1. Osteoporosis;Lane;Clin. Orthop. Relat. Res.,2000

2. Osteoporosis: Now and the future;Rachner;Lancet,2011

3. Postmenopausal osteoporosis;Eastell;Nat. Rev. Dis. Prim.,2016

4. Clinical practice. Postmenopausal osteoporosis;Black;N. Engl. J. Med.,2016

5. Ovarian aging and osteoporosis;Li;Adv. Exp. Med. Biol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3