Author:
Tan Zengjing,Li Jinxiu,Guan Junhua,Wang Chaohui,Zhang Zheng,Shi Gangrong
Abstract
The natural resistance-associated macrophage protein (NRAMP) family plays crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. To understand the roles of AhNRAMP genes in iron/cadmium interactions in peanut, genome-wide identification and bioinformatics analysis was performed. A total of 15 AhNRAMP genes were identified from the peanut genome, including seven gene pairs derived from whole-genome duplication and a segmental duplicated gene. AhNRAMP proteins were divided into two distinct subfamilies. Subfamily I contains eight acid proteins with a specific conserved motif 7, which were predicted to localize in the vacuole membrane, while subfamily II includes seven basic proteins sharing specific conserved motif 10, which were localized to the plasma membrane. Subfamily I genes contained four exons, while subfamily II had 13 exons. AhNRAMP proteins are perfectly modeled on the 5m94.1.A template, suggesting a role in metal transport. Most AhNRAMP genes are preferentially expressed in roots, stamens, or developing seeds. In roots, the expression of most AhNRAMPs is induced by iron deficiency and positively correlated with cadmium accumulation, indicating crucial roles in iron/cadmium interactions. The findings provide essential information to understand the functions of AhNRAMPs in the iron/cadmium interactions in peanuts.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献