Hybrid-Type Transparent Organic Light Emitting Diode with High Contrast Using Switchable Windows

Author:

Choi Seongwook,Lee Chang-HeeORCID,Choi Ju-Hyeok,Choi Sung-Hoon,Kang BongsoonORCID,Lee Gi-Dong

Abstract

Transparent organic light emitting diode (OLED) display is one of the most promising devices among next-generation information displays because of beneficial characteristics, such as self-emissive and optically clear properties. Nevertheless, in conventional transparent OLED display devices, there are serious intrinsic problems in terms of the transmittance in the dark state because of empty windows in the cell, so the contrast ratio of the transparent OLED display would be deteriorated even though it can exhibit excellent bright state. In general, the transparent mode using the OLED device applies an empty area in each pixel because an emitting device could never reveal the background image, so the transparent OLED should contain the empty area in the pixel for transparent images. This may cause the optical degradation in the dark state. To solve this problem, we propose hybrid-type transparent OLED display modes that apply a liquid crystal (LC) to the transparent window part of the empty space. In this paper, we applied two dichroic LC modes— which use an electrically controlled birefringence (ECB) mode (Heilmeier type) for the polarized mode and a cholesteric LC mode (Guest-Host mode) for the non-polarized mode—to the empty area. In each hybrid mode, we have observed optical performance, including the transmittance in the dark/bright state, contrast ratio and response time as a function of cell parameters. As a result, we confirmed that the dark state and the contrast ratio could be improved by applying the proposed modes without serious decay of the transmittance in the bright state.

Funder

Ministry of Education

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3