Author:
Majerz Irena,Krawczyk Marta S.
Abstract
A new coordination compound of copper(II) with a tolfenamate ligand of the paddle-wheel-like structure [CuII2(Tolf)4(MeOH)2]∙2MeOH was obtained and structurally characterized. Chemical bonds of Cu(II)∙∙∙Cu(II) and Cu(II)–O were theoretically analyzed and compared with the results for selected similar structures from the CSD database. QTAIM analysis showed that the Cu(II)∙∙∙Cu(II) interaction has a strength comparable to a hydrogen bond, as indicated by the electron density at a critical point. The remaining QTAIM parameters indicate stability of the Cu(II)∙∙∙Cu(II) interaction. Other methods, such as NCI and NBO, also indicate a significant strength of this interaction. Thus, the Cu(II)∙∙∙Cu(II) interaction can be treated as one of the noncovalent interactions that affects the structure of the coordination compound, the packing of molecules in the crystal, and the general properties of the compound.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis