Infant Saliva Levels of microRNA miR-151a-3p Are Associated with Risk for Neurodevelopmental Delay

Author:

Hicks Steven D.ORCID,Confair Alexandra

Abstract

Prompt recognition of neurodevelopmental delay is critical for optimizing developmental trajectories. Currently, this is achieved with caregiver questionnaires whose sensitivity and specificity can be limited by socioeconomic and cultural factors. This prospective study of 121 term infants tested the hypothesis that microRNA measurement could aid early recognition of infants at risk for neurodevelopmental delay. Levels of four salivary microRNAs implicated in childhood autism (miR-125a-5p, miR-148a-5p, miR-151a-3p, miR-28-3p) were measured at 6 months of age, and compared between infants who displayed risk for neurodevelopmental delay at 18 months (n = 20) and peers with typical development (n = 101), based on clinical evaluation aided by the Survey of Wellbeing in Young Children (SWYC). Accuracy of microRNAs for predicting neurodevelopmental concerns at 18 months was compared to the clinical standard (9-month SWYC). Infants with neurodevelopmental concerns at 18 months displayed higher levels of miR-125a-5p (d = 0.30, p = 0.018, adj p = 0.049), miR-151a-3p (d = 0.30, p = 0.017, adj p = 0.048), and miR-28-3p (d = 0.31, p = 0.014, adj p = 0.048). Levels of miR-151a-3p were associated with an 18-month SWYC score (R = −0.19, p = 0.021) and probability of neurodevelopmental delay at 18 months (OR = 1.91, 95% CI, 1.14–3.19). Salivary levels of miR-151a-3p enhanced predictive accuracy for future neurodevelopmental delay (p = 0.010, X2 = 6.71, AUC = 0.71) compared to the 9-month SWYC score alone (OR = 0.56, 95% CI, 0.20–1.58, AUC = 0.567). This pilot study provides evidence that miR-151a-3p may aid the identification of infants at risk for neurodevelopmental delay. External validation of these findings is necessary.

Funder

Gerber Foundation

Brad Hollinger Autism Research Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3