Profiling Chromatin Accessibility Responses in Goat Bronchial Epithelial Cells Infected with Pasteurella multocida

Author:

Chen QiaolingORCID,Chen Zhen,Zhang ZhenxingORCID,Pan Haoju,Li Hong,Li Xubo,An Qi,Cheng Yiwen,Chen SiORCID,Man Churiga,Du Li,Wang Fengyang

Abstract

Pasteurella multocida can cause goat hemorrhagic sepsis and endemic pneumonia. Respiratory epithelial cells are the first line of defense in the lungs during P. multocida infection. These cells act as a mechanical barrier and activate immune response to protect against invading pathogenic microorganisms. Upon infection, P. multocida adheres to the cells and causes changes in cell morphology and transcriptome. ATAC-seq was conducted to determine the changes in the chromatin open region of P. multocida-infected goat bronchial epithelial cells based on transcriptional regulation. A total of 13,079 and 28,722 peaks were identified in the control (CK) and treatment (T) groups (P. multocida infection group), respectively. The peaks significantly increased after P. multocida infection. The specific peaks for the CK and T groups were annotated to 545 and 6632 genes, respectively. KEGG pathway enrichment analysis revealed that the specific peak-related genes in the T group were enriched in immune reaction-related pathways, such as Fc gamma R-mediated phagocytosis, MAPK signaling pathway, bacterial invasion of epithelial cells, endocytosis, and autophagy pathways. Other cellular component pathways were also enriched, including the regulation of actin cytoskeleton, adherent junction, tight junction, and focal adhesion. The differential peaks between the two groups were subsequently analyzed. Compared to those in the CK group, 863 and 11 peaks were upregulated and downregulated, respectively, after the P. multocida infection. Fifty-six known transcription factor motifs were revealed in upregulated peaks in the P. multocida-infected group. By integrating ATAC-seq and RNA-seq, some candidate genes (SETBP1, RASGEF1B, CREB5, IRF5, TNF, CD70) that might be involved in the goat bronchial epithelial cell immune reaction to P. multocida infection were identified. Overall, P. multocida infection changed the structure of the cell and caused chromatin open regions to be upregulated. In addition, P. multocida infection actively mobilized the host immune response with the inflammatory phenotype. The findings provide valuable information for understanding the regulatory mechanisms of P. multocida-infected goat bronchial epithelial cells.

Funder

Hainan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference42 articles.

1. Pasteurella multocida: From zoonosis to cellular microbiology;Wilson;Clin. Microbiol. Rev.,2013

2. Pasteurella multocida infections;Kristinsson;Pediatr. Rev.,2007

3. Swine atrophic rhinitis caused by pasteurella multocida toxin and bordetella dermonecrotic toxin;Horiguchi;Curr. Top. Microbiol. Immunol.,2012

4. Pasteurella multocida pathogenesis: 125 years after Pasteur;Harper;FEMS Microbiol. Lett.,2006

5. Respiratory microbiome and epithelial interactions shape immunity in the lungs;Invernizzi;Immunology,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3