Excess Absorbance as a Novel Approach for Studying the Self-Aggregation of Vital Dyes in Liquid Solution

Author:

Minó AntonioORCID,Zeppa Lucio,Ambrosone LuigiORCID

Abstract

In the present paper, a simple method for analyzing the self-aggregation of dyes in a solution by a UV-visible absorption measurements is proposed. The concept of excess absorbance is introduced to determine an equation whose coefficients determine the parameters of the aggregation equilibrium. The computational peculiarities of the model are first discussed theoretically and then applied to sodium fluorescein in polar protic and aprotic solvents, as well as in aqueous solutions of methylene blue, which is a cationic dye. Although the experimental responses are very different, the model appears to work equally well in both cases. The model reveals that the trimer is the most likely configuration in both solvents. Furthermore, aggregation is strongly favored for the protic solvent. Interestingly, the model establishes that in aqueous solutions of methylene blue, the tetramer is the predominant form, which has long been assumed and recently demonstrated with sophisticated computational techniques.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference40 articles.

1. A review of NIR dyes in cancer targeting and imaging;Luo;Biomaterials,2011

2. Biosensors–sense and sensitivity;Turner;Science,2000

3. Grätzel, M. (2011). Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific.

4. Historical aspects and evolution of the application of vital dyes in vitreoretinal surgery and chromovitrectomy;Rodrigues;Vital Dyes in Vitreoretinal Surgery,2008

5. Using canalography to visualize the in vivo aqueous humor outflow conventional pathway in humans;Zeppa;JAMA Ophthalmol.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3