Transcriptional and Physiological Analysis Reveal New Insights into the Regulation of Fertilization (N, P, K) on the Growth and Synthesis of Medicinal Components of Dendrobium denneanum

Author:

Fan Yijun,Xu Erya,Wang Gang,He Dingxin,Ma Jie,Liu Yuanyuan,Li Xuebing,Luo Aoxue

Abstract

Dendrobium denneanum is an important medicinal and ornamental plant. Its ornamental and medicinal values are affected by its vegetative growth conditions and chemical composition accumulation. This study adopted an orthogonal experimental design to treat D. denneanum with nine different levels of nitrogen (N), potassium (K), and phosphorus (P). The morphological indicators of the plant were positively correlated with the nitrogen concentration. The polysaccharide content was the highest at 1500 mg·L−1 nitrogen and 3000 mg·L−1 phosphorous and was 26.84% greater than the control. The flavonoid content increased by 36.2% at 500 mg·L−1 nitrogen, 2000 mg·L−1 phosphorous, and 300 mg·L−1 potassium. Principal component score analysis showed that nitrogen had the most significant impact on the various indicators of D. denneanum, followed by phosphorus and potassium. The comprehensive score showed that the T9 treatment (N: 1500 mg·L−1, P: 3000 mg·L−1, K: 500 mg·L−1) had the strongest effect on D. denneanum. Transcriptional analysis showed that compared with the control, the T9 treatment led to 2277 differentially expressed genes (1230 upregulated and 1047 downregulated). This includes fifteen genes enriched in the MAPK signaling pathway, five genes in phenylpropanoid biosynthesis, and two genes in flavonoid biosynthesis. These genes may be involved in regulating plant growth and the biosynthesis of polysaccharides and flavonoids. This study provides guidance for the optimal use of N, P, and K in the cultivation of D. denneanum.

Funder

International Science and Technology Innovation Cooperation Project of Sichuan

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3