Ectopic Expression of Sugarcane ScAMT1.1 Has the Potential to Improve Ammonium Assimilation and Grain Yield in Transgenic Rice under Low Nitrogen Stress

Author:

Gao Shiwu,Yang Yingying,Guo JinlongORCID,Zhang Xu,Feng Minxie,Su YachunORCID,Que Youxiong,Xu Liping

Abstract

In China, nitrogen (N) fertilizer is excessively used in sugarcane planting areas, while the nitrogen use efficiency (NUE) of sugarcane is relatively low. Mining and identifying the key genes in response to low N stress in sugarcane can provide useful gene elements and a theoretical basis for developing sugarcane varieties with high NUE. In our study, RNA-Seq combined with qRT-PCR analysis revealed that the ScAMT1.1 gene responded positively to low N stress, resulting in the stronger low N tolerance and high NUE ability of sugarcane cultivar ROC22. Then, ScAMT1.1 was cloned from sugarcane. The full-length cDNA of the ScAMT1.1 gene is 1868 bp, containing a 1491 bp open reading frame (ORF), and encoding 496 amino acids. ScAMT1.1 belongs to the AMT superfamily and shares 91.57% homologies with AMT1.1 from Oryza sativa. Furthermore, it was stably overexpressed in rice (O. sativa). Under low N treatment, the plant height and the fresh weight of the ScAMT1.1-overexpressed transgenic rice were 36.48% and 51.55% higher than that of the wild-type, respectively. Both the activity of ammonium assimilation key enzymes GS and GDH, and the expression level of ammonium assimilation key genes, including GS1.1, GS1.2, GDH, Fd-GOGAT, and NADH-GOGAT2 in the transgenic plants, were significantly higher than that of the wild-type. The grain number and grain yield per plant in the transgenic rice were 6.44% and 9.52% higher than that of the wild-type in the pot experiments, respectively. Taken together, the sugarcane ScAMT1.1 gene has the potential to improve ammonium assimilation ability and the yield of transgenic rice under low N fertilizer conditions. This study provided an important functional gene for improving sugarcane varieties with high NUE.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province, China

National Key R&D Program of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference35 articles.

1. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3);Sonoda;Plant Cell Physiol.,2003

2. Nitrogen in sugarcane derived from fertiliser under Brazilian field conditions;Franco;Field Crop. Res.,2011

3. Acquisition of nitrogen by ratoon crops of sugarcane as influenced by waterlogging and split applications;Kingston;Proc. Conf. Aust. Soc. Sugar Cane Technol.,2008

4. Recent advances to improve nitrogen use efficiency of sugarcane in the South African sugar industry;Meyer;Proc. Int. Soc. Sugar Cane Technol.,2007

5. Robinson, N., Brackin, R., Vinall, K., Soper, F., Holst, J., Gamage, H., Paungfoo-Lonhienne, C., Rennenberg, H., Lakshmanan, P., and Schmidt, S. (2011). Nitrate paradigm does not hold up for sugarcane. PLoS ONE, 6.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3